2.1 & 2.2 Solving Equations

(Get the variable on a side by itself)

If there are addition or subtraction signs, add opposite to both sides of equation to get the variable term by itself.

1. \(x + 6 = 9 \)

 Add \((-6)\):

 \[
 \begin{align*}
 x + 6 & = 9 \\
 \downarrow & \quad \downarrow \\
 x & = 3
 \end{align*}
 \]

2. \(x - 3 = 8 \)

3. \(4 + x = -8 \)

4. \(-5 = x + 8 \)

5. \(3 + t = 21 \)

6. \(-19 = -47 + y \)

If there is a coefficient (number) on the variable, divide both sides of the equation by that coefficient (number) to get the variable by itself.

1. \(\frac{2x}{2} = \frac{6}{2} \)

 Divide by 2:

 \[
 \begin{align*}
 \frac{2x}{2} & = \frac{6}{2} \\
 x & = 3
 \end{align*}
 \]

2. \(3x = -9 \)

3. \(-4x = -16 \)

4. \(-8x = 4 \)

5. \(-20 = -5w \)

6. \(18 = -9m \)

7. \(-x = -18 \)

8. \(-15 = -w \)

9. \(11 = -2m \)
Mixed Practice. Solve these equations by using the two steps:

1. If there are addition or subtraction **signs**, add opposite to both sides of equation to get the variable term by itself.
2. If there is a **coefficient** (number) on the variable, divide both sides of the equation by that coefficient (number).

ADD OPPOSITE TO GET RID OF SIGN; DIVIDE BY SAME NUMBER TO GET RID OF COEFFICIENT.

1. \[3x + 5 = 17\]
 Add \((-5)\)
 \[3x = 12\]
 Divide by 3
 \[x = 4\]

2. \[45 - t = 10\]
3. \[4x + 5 = -2\]

4. \[-5x - 6 = 16\]
5. \[8 = 4 - 2x\]
6. \[-91 = 9 + 3t\]

7. \[3m - 4 = 11\]
8. \[-1 = 5 - 3t\]
9. \[4 = 5m + 8\]

Combining like terms. If like terms occur on the same side of the equation, combine the before you use the two steps.

1. \[3x + 4x = -14\]
 combine terms \[7x = -14\]
 divide by 7 \[x = -2\]

2. \[-10y - 3y = -13\]

3. \[4y = 5 - (-12)\]

4. \[4 + 3x - 6 = 4\]
5. \[2 = 3x + 5x - 2\]
6. \[-4x + 2x + 1 = -9\]