COURSE TITLE: Introduction to AutoCAD  
COURSE NUMBER: ETD 1320

COURSE DESCRIPTION (with prerequisites):
This course will provide basic instruction in the various commands, methods, and techniques of Computer Aided Drafting (CAD) systems using AutoCAD. Start-up procedures, menu/icon software operations and the basic draw, modify, dimension and plot commands will be emphasized. Students will complete a series of review exercises and drawings. Prerequisite: Eligibility for MAC 1105, College Algebra (A basic understanding of Windows and use of the mouse is helpful.) 3 semester credit hours

NAME(S) OF INSTRUCTORS:
Aubri Hanson, Workforce & Economic Development Building “WD”, Room 122B, Telephone (850)718-2321, College extension 2321, Office hours as posted, Hansona@chipola.edu.

EFFECTIVE ACADEMIC YEAR:
2018-2019

REQUIRED TEXTBOOKS AND INSTRUCTIONAL MATERIALS:

GRADING POLICY:
The standing of a student in each course is expressed by one of the following letters and corresponding grading system:
A – 90 – 100
B – 80 – 89
C – 70 – 79
D – 60 – 69
F – 59 or less
The Chipola Catalog provides policies and procedures regarding the grading system. A student’s Grade Point Average is derived from the grading system/quality point scale.

ATTENDANCE AND WITHDRAWAL POLICIES:
Chipola College expects regular attendance of all students, and all instructors record attendance daily. Students who are absent from classes for any reason other than official college activities must satisfy the instructor concerned that the absence was due to illness or other clearly unavoidable reasons. Otherwise, the student may suffer grade loss at the discretion of the instructor. Chipola policy allows each instructor to specify in
the Instructor First Day Handout whether or not an absence is excusable and what affect the absence or tardy may have on the grade.

A student is allowed to repeat a course a maximum of three (3) times. **On the third attempt a student (1) must bear the full cost of instruction (unless waived by Student Services), (2) cannot withdraw, and (3) must receive a grade.**

**MAKE-UP POLICY:**
Chipola allows each instructor to specify in the Instructor First Day Handout the makeup policy.

**ACADEMIC HONOR CODE POLICY:**
Students are expected to uphold the Academic Honor Code. Chipola College’s Honor Code is based on the premise that each student has the responsibility to (1) uphold the highest standards of academic honesty in his/her own work; (2) refuse to tolerate academic dishonesty in the college community; and (3) foster a high sense of honor and social responsibility on the part of students. Further information regarding the Academic Honor Code may be found in the Chipola Catalog, Student Governance section.

**STUDENTS WITH DISABILITIES POLICY:**
Chipola College is committed to making all programs and facilities accessible to anyone with a disability. Chipola’s goal is for students to obtain maximum benefit from their educational experience and to effectively transition into the college environment. Students with disabilities are requested to voluntarily contact the Office of Students with Disabilities to complete the intake process and determine their eligibility for reasonable accommodations.

**NOTICE OF EQUAL ACCESS/EQUAL OPPORTUNITY AND NONDISCRIMINATION:**
Chipola College does not discriminate against any persons, employees, students, applicants or others affiliated with the college with regard to race, color, religion, ethnicity, national origin, age, veteran’s status, disability, gender, genetic information, marital status, pregnancy or any other protected class under applicable federal and state laws, in any college program, activity or employment.

Wendy Pippen, Associate Vice President of Human Resources, Equity Officer and Title IX Coordinator, 3094 Indian Circle, Marianna, FL 32446, Building A, Room 183C, 850-718-2269, pippenw@chipola.edu.

**LIBRARY AND ON-LINE REFERENCE MATERIALS:**
The library is a comprehensive learning resource center providing information in print, electronic, and multimedia format to support the educational objectives of the College. On-line catalogs, e-books and electronic databases can be accessed by using the LINCCWeb icon on the Chipola Library website at [www.chipola.edu/library](http://www.chipola.edu/library). If you have questions about database usage consult the “How to Use the Chipola Databases” on the Library website or call the Library at 850/718-2274 during regular hours. Library hours are posted each semester at the building entrance and on the Library website.
See your Instructor First Day Handout for individual instructor recommendations and resources.

**TECHNOLOGY RESOURCES:**
The college’s learning management system is Canvas. Classes become available on Canvas on the first day of the semester. It is the student’s responsibility to log onto the Canvas system the first day of class to establish the first day of attendance and to check announcements. All official class communication must be through Canvas. For further information, contact your instructor or the Director of eLearning. The Canvas support hotline is available online in live chat and on the phone, toll-free, at 855-308-2812 for any issues in accessing or utilizing Canvas. The Technology Center, located in the library, is equipped with computer workstations. Lab hours are posted each semester at the building entrance and on the Library website.

**FREE TUTORING RESOURCES:**
The Academic Center for Excellence (ACE) Lab, located in Building L, offers free tutoring from 8 a.m. to 5 p.m. and is equipped with computer workstations. ACE lab hours are posted each semester at the room entrance and on the website. Additionally, Chipola College has contracted Smarthinking, a Pearson Company, for online tutoring services, accessible especially from 5 p.m. to 8 a.m. and weekends. Smarthinking can be accessed through Canvas.

**ELECTRONIC DEVICE USAGE STATEMENT:**
Classrooms should be free of all unnecessary distractions from the task of learning. Therefore, as a general rule, students should silence and avoid use of all electronic devices (laptops, phones, tablets, etc.) not being used for coursework. Consult first-day handouts for any specific policies related to the use of electronic devices in the classroom, as they may vary depending upon the nature of the course or the guidelines of the instructor. Faculty reserve the right to regulate the use of electronic devices and their accessories in class.

**DISCIPLINE SPECIFIC COMPETENCIES / LEARNING OUTCOMES:**
Program Learning Outcome: Use technology to organize, acquire, and convey information on drawings and reports.

<table>
<thead>
<tr>
<th>COURSE-LEVEL STUDENT LEARNING OUTCOMES FOR ETD 1320</th>
<th>DISCIPLINE-SPECIFIC GENERAL EDUCATION COMPETENCIES</th>
<th>ASSESSMENT METHODS FOR COURSE LEVEL STUDENT LEARNING OUTCOMES</th>
<th>LEARNING ARTIFACTS FOR AA PROGRAM ASSESSMENT</th>
</tr>
</thead>
</table>

At the completion of the course, the student will be able to:

- Students will demonstrate a working knowledge within the AutoCAD environment to set-up drawing files,
- Students will demonstrate knowledge using basic Draw and Modify commands to create AutoCAD drawings,
- Students will exhibit the proper use of Display and Inquiry commands,
- Students will create annotations through the proper use of the Dimensioning and Text commands,
- Students will output drawing files as scaled plotted hard copies,
- Students will develop and enhance their basic personal computing skills,
- Make use of technology to organize, acquire, convey, and present information in a technical drawing for various disciplines, and
- Communicate with clarity and precision regarding basic drafting concepts.

Demonstrate mastery of computer aided drafting (CAD) by constructing engineering, mechanical, and geometrical drawings.
Demonstrate ability to sketch, letter, and generate line-work to describe various objects.
Demonstrate ability to read and produce drawings involving orthographic projection, sections, pictorial and auxiliary views.
Demonstrate a wide range of mathematical skills including plane trigonometry, strength of materials, technical, and other engineering problems, including theories learned in engineering mechanics.
Demonstrate ability to use standard surveying equipment to make measurements and calculations to run a traverse, establish levels, keep notes and produce required drawings.
Demonstrate ability to analyze physical and mechanical properties of soil and concrete.
Demonstrate ability to solve basic hydraulic problems using the theory of incompressible fluids.
Demonstrate on-site skills required to establish grades, locate property lines and utilities and produce plots and calculate cut and fill by average-end-area.

Assessment methods used are:
Q, UT, SD, SP, RPT, F

Assessment methods used are:
Q, UT, SD, SP, RPT, F
**Assessment Codes**

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Tests</td>
</tr>
<tr>
<td>Pre/Post</td>
<td>Pre- and Post-Tests</td>
</tr>
<tr>
<td>OT</td>
<td>Objective Tests</td>
</tr>
<tr>
<td>U</td>
<td>Unit Tests</td>
</tr>
<tr>
<td>Q</td>
<td>Quizzes</td>
</tr>
<tr>
<td>F</td>
<td>Final Examination</td>
</tr>
<tr>
<td>CF</td>
<td>Cumulative Final</td>
</tr>
<tr>
<td>EX</td>
<td>Departmental Exam</td>
</tr>
<tr>
<td>SE</td>
<td>Nat’l or State Standardized Exam</td>
</tr>
<tr>
<td>RPT</td>
<td>Report/Presentation</td>
</tr>
<tr>
<td>SP</td>
<td>Skills Performance</td>
</tr>
<tr>
<td>SD</td>
<td>Skills Demonstration</td>
</tr>
<tr>
<td>W</td>
<td>Writing Assignments</td>
</tr>
<tr>
<td>E</td>
<td>Essays</td>
</tr>
<tr>
<td>DE</td>
<td>Documented Essays</td>
</tr>
<tr>
<td>RP</td>
<td>Research papers</td>
</tr>
<tr>
<td>J</td>
<td>Jury</td>
</tr>
<tr>
<td>R</td>
<td>Recital</td>
</tr>
<tr>
<td>Proj.</td>
<td>Projects</td>
</tr>
<tr>
<td>Exp.</td>
<td>Experiments</td>
</tr>
<tr>
<td>Cap.</td>
<td>Capstone Project</td>
</tr>
<tr>
<td>Cap. Course=Capstone Course</td>
<td></td>
</tr>
<tr>
<td>Prac.</td>
<td>Practicum</td>
</tr>
<tr>
<td>Intern.</td>
<td>Internship</td>
</tr>
<tr>
<td>H</td>
<td>Homework</td>
</tr>
<tr>
<td>PS</td>
<td>Problem Solving</td>
</tr>
<tr>
<td>DB</td>
<td>Discussion Board</td>
</tr>
<tr>
<td>BO</td>
<td>Behavioral Observation</td>
</tr>
<tr>
<td>Clin.</td>
<td>Clinicals</td>
</tr>
<tr>
<td>CS</td>
<td>Case Study</td>
</tr>
<tr>
<td>CP</td>
<td>Case Plan</td>
</tr>
<tr>
<td>Port.</td>
<td>Portfolio</td>
</tr>
<tr>
<td>Obs.</td>
<td>Teacher Observation</td>
</tr>
<tr>
<td>Sk. Check</td>
<td>Skills Check-off</td>
</tr>
<tr>
<td>JP</td>
<td>Curriculum Frameworks</td>
</tr>
<tr>
<td>Curriculum Frameworks</td>
<td></td>
</tr>
<tr>
<td>JP</td>
<td>Judged</td>
</tr>
</tbody>
</table>

**MEANS OF ACCOMPLISHING STUDENT LEARNING OUTCOMES:**

Assessments are determined by measuring the ability of each student to retain the learning outcomes and objectives of the course.

**ASSIGNMENT AND/OR COURSE OUTLINE**

Course Content:
- Introduction to quality
- Quality management
- Measuring process quality
- Quality improvement and assessment
- Continuous improvement techniques
- Non-conforming products and corrective action
- Problem solving

Assignments

Assignments will consist of homework problems and reading from the textbook, eLearning materials from Amatrol, hands-on labs performed in class, lab reports, and other assignments at the instructor’s discretion.

A primary focus of this course is the development of the State Curriculum Framework skills:
- Demonstrate an understanding of industrial processes, predictive maintenance programs, and material properties.
- Generate and interpret computer-aided drawings.
- Demonstrate proficiently in the use of quality assurance methods and quality control concepts inclusive of predictive and preventative maintenance theory; program effectiveness, efficiencies and savings; Lean Operating Systems; Six Sigma; and DMAIC to create variation-free, value-added processes.
- Demonstrate proficiency in using tools, instruments and testing devices.
- Demonstrate basic troubleshooting skills in automated processes.
- Effectively communicate verbally and in writing within a variety of business environments.
• Apply mathematical concepts typical in manufacturing processes.
• Demonstrate an understanding of modern business practices and strategies and the implications of globalization and the impact of international trade on manufacturing in a competitive environment.

EXAMINATIONS:
Assessments are determined by measuring the ability of each student to retain the learning outcomes and objectives of the course.
1. Attending classes
2. Completing book and computer assignments along with laboratory work.
3. Student must demonstrate an understanding theory of operating principles prior to stating lab sheets. Have the instructor sign and verify your lab sheets after completing each lab assignment. Turn in your lab sheets to the instructor for grading and recording.

The course assessments consist of written knowledge examinations and performance evaluations.
   Written/online Knowledge…….45%
   Performance/Skills Check…….45%
   Attendance………………………….10%

CERTIFICATION ALIGNMENT:
This course is designed to help those interested in testing for the Manufacturing Skill Standards Council Certified Production Technician (MSSC-CPT) Quality and Measurement exam. When you pass the Quality and Measurement exam, you receive a certificate (not a certification) that serves as a base for your pursuit of the CPT Certification. To earn your certification, you must submit and pass the Safety, Maintenance Awareness, and Manufacturing Processes exams. Individuals must pass all four CPTAE required assessments within two years in order to achieve the full-CPTAE certification. The MSSC-CPT Certification is valid for 5 years.

See your Instructor First Day Handout for individual instructor assignment schedule.