COURSE TITLE: Process Control & Automation
COURSE NUMBER: ETS 2535C

COURSE DESCRIPTION (with prerequisites):
This course serves as a capstone for the advanced manufacturing program. Concentration will be on integration of sensors and control systems for level, flow, temperature, pressure, and other applications. Human Machine Interfaces and methods of control theory including PID will be a central focus. This course is one of four courses that lead to a Pneumatics, Hydraulics and Motors state certification. Prerequisite course ETS 2542C. 3 semester credit hours. (6 contact hours.)

NAME(S) OF INSTRUCTORS:
Aubri Hanson, Teacher Education Building “O”, Room 107, Telephone (850)718-2321, College extension 2321, Office hours as posted, hansona@chipola.edu

EFFECTIVE ACADEMIC YEAR:
2016-2017

REQUIRED TEXTBOOKS AND INSTRUCTIONAL MATERIALS:

Amatrol eBook, 5085-1C Advanced Manufacturing Program Summary, Volume 1, Copyright 2013 Amatrol, Inc.

GRADING POLICY:
The standing of a student in each course is expressed by one of the following letters and corresponding grading system:
A – 90 – 100
B – 80 – 89
C – 70 – 79
D – 60 – 69
F – 59 or less
The Chipola Catalog provides policies and procedures regarding the grading system. A student’s Grade Point Average is derived from the grading system/quality point scale.

ATTENDANCE AND WITHDRAWAL POLICIES:
Chipola College expects regular attendance of all students, and all instructors record attendance daily. Students who are absent from classes for any reason other than official college activities must satisfy the instructor concerned that the absence was due to illness or other clearly unavoidable reasons. Otherwise, the student may suffer grade
loss at the discretion of the instructor. Chipola policy allows each instructor to specify in the Instructor First Day Handout whether or not an absence is excusable and what affect the absence or tardy may have on the grade.

A student is allowed to repeat a course a maximum of three (3) times. **On the third attempt a student (1) must bear the full cost of instruction (unless waived by Student Services), (2) cannot withdraw, and (3) must receive a grade.**

MAKE-UP POLICY:
Chipola allows each instructor to specify in the Instructor First Day Handout the makeup policy.

ACADEMIC HONOR CODE POLICY:
Students are expected to uphold the Academic Honor Code. Chipola College’s Honor Code is based on the premise that each student has the responsibility to (1) uphold the highest standards of academic honesty in his/her own work; (2) refuse to tolerate academic dishonesty in the college community; and (3) foster a high sense of honor and social responsibility on the part of students. Further information regarding the Academic Honor Code may be found in the Chipola Catalog, Student Governance section.

STUDENTS WITH DISABILITIES POLICY:
Chipola College is committed to making all programs and facilities accessible to anyone with a disability. Chipola’s goal is for students to obtain maximum benefit from their educational experience and to effectively transition into the college environment. Students with disabilities are requested to voluntarily contact the Office of Students with Disabilities to complete the intake process and determine their eligibility for reasonable accommodations.

NOTICE OF EQUAL ACCESS/EQUAL OPPORTUNITY AND NONDISCRIMINATION:
Chipola College does not discriminate against any persons, employees, students, applicants or others affiliated with the college with regard to race, color, religion, ethnicity, national origin, age, veteran’s status, disability, gender, genetic information, marital status, pregnancy or any other protected class under applicable federal and state laws, in any college program, activity or employment.

Karan Davis, Associate Vice President of Human Resources, Equity Officer and Title IX Coordinator, 3094 Indian Circle, Marianna, FL 32446, Building A, Room 183A, 850-718-2205, davisk@chipola.edu.

LIBRARY AND ON-LINE REFERENCE MATERIALS:
The library is a comprehensive learning resource center providing information in print, electronic, and multimedia format to support the educational objectives of the College. On-line catalogs, e-books and electronic databases can be accessed by using the LINCCWeb icon on the Chipola Library website at www.chipola.edu/library. If you have questions about database usage consult the “How to Use the Chipola Databases” on the Library website or call the Library at 850/718-2274 during regular hours. Library
hours are posted each semester at the building entrance and on the Library website. See your Instructor First Day Handout for individual instructor recommendations and resources.

TECHNOLOGY RESOURCES:
The college’s learning management system is **Canvas**. Classes become available on Canvas on the first day of the semester. It is the student’s responsibility to log onto the Canvas system the first day of class to establish the first day of attendance and to check announcements. All official class communication must be through Canvas. For further information, contact your instructor or the Director of eLearning. The Canvas support hotline is available online in live chat and on the phone, toll-free, at 855-308-2812 for any issues in accessing or utilizing Canvas. The **Technology Center**, located in the library, is equipped with computer workstations. Lab hours are posted each semester at the building entrance and on the Library website.

FREE TUTORING RESOURCES:
The **Academic Center for Excellence (ACE) Lab**, located in Building L, offers free tutoring from 8 a.m. to 5 p.m. and is equipped with computer workstations. ACE lab hours are posted each semester at the room entrance and on the website. Additionally, Chipola College has contracted **Smarthinking**, a Pearson Company, for online tutoring services, accessible especially from 5 p.m. to 8 a.m. and weekends. Smarthinking can be accessed through Canvas.

ELECTRONIC DEVICE USAGE STATEMENT:
Classrooms should be free of all unnecessary distractions from the task of learning. Therefore, as a general rule, students should silence and avoid use of all electronic devices (laptops, phones, tablets, etc.) not being used for coursework. Consult first-day handouts for any specific policies related to the use of electronic devices in the classroom, as they may vary depending upon the nature of the course or the guidelines of the instructor. Faculty reserve the right to regulate the use of electronic devices and their accessories in class.

DISCIPLINE SPECIFIC COMPETENCIES / LEARNING OUTCOMES:
This course will develop expertise in process control applications and human machine interfaces. Both analog and digital instrumentation will be utilized and interfaced with programmable logic controllers to control a process.
LINKING COURSE-LEVEL STUDENT LEARNING OUTCOMES WITH DISCIPLINE-SPECIFIC COMPETENCIES, ASSESSMENT METHODS, AND ARTIFACTS

<table>
<thead>
<tr>
<th>COURSE-LEVEL STUDENT LEARNING OUTCOMES FOR ETS 2535C</th>
<th>DISCIPLINE-SPECIFIC GENERAL EDUCATION COMPETENCIES</th>
<th>ASSESSMENT METHODS FOR COURSE LEVEL STUDENT LEARNING OUTCOMES</th>
<th>LEARNING ARTIFACTS FOR AA PROGRAM ASSESSMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon the successful completion of this course students will be able to:</td>
<td>1. Demonstrate an understanding of industrial processes and material properties.</td>
<td>Assessment methods used are:</td>
<td></td>
</tr>
<tr>
<td>• Demonstrate knowledge of industrial processes and control systems</td>
<td>2. Demonstrate ability to generate and interpret computer-aided drawings (CAD).</td>
<td>Q, T, SD, SP, Sk. Check</td>
<td></td>
</tr>
<tr>
<td>• Demonstrate proficiency in using tools, instruments, and testing devices</td>
<td>3. Demonstrate a fundamental understanding of electronics and electricity.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Demonstrate basic troubleshooting skills</td>
<td>4. Demonstrate an understanding of industrial safety, health, and environmental requirements.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Create a human machine interface and use it to control a process</td>
<td>5. Demonstrate proficiency in the use of quality assurance methods and quality control concepts.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Interface control instrumentation with a programmable logic controller</td>
<td>6. Demonstrate proficiency in using tools, instruments, and testing devices.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Analyze a process to identify and correct problems</td>
<td>7. Demonstrate math skills appropriate for employees in an engineering work environment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Work effectively as part of a team</td>
<td>8. Demonstrate basic troubleshooting skills appropriate for employees in an engineering work environment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Apply principles of robotics to automated systems</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assessment Codes

- T = Tests
- Pre/Post = Pre- and Post-Tests
- OT = Objective Tests
- UT = Unit Tests
- Q = Quizzes
- F = Final Examination
- CF = Cumulative Final
- EX = Departmental Exam
- SE = Nat'l or State Standardized Exam
- RPT = Report/Presentation
- SP = Skills Performance
- SD = Skills Demonstration
- W = Writing Assignments
- E = Essays
- DE = Documented Essays
- RP = Research papers
- J = Jury
- R = Recital
- Proj. = Projects
- Exp. = Experiments
- Cap. Proj. = Capstone Project
- Cap. Course = Capstone Course
- Prac. = Practicum
- Intern. = Internship
- H = Homework
- PS = Problem Solving
- DB = Discussion Board
- BO = Behavioral Observation
- Clin. = Clinicals
- CS = Case Study
- CP = Case Plan
- Port. = Portfolio
- Obs. = Teacher Observation
- Sk. Check = Skills Check-off
- Curriculum Frameworks
- JP = Judged
- Performance/Exhibition
MEANS OF ACCOMPLISHING STUDENT LEARNING OUTCOMES:
Assessments are determined by measuring the ability of each student to retain the learning outcomes and objectives of the course.

1. Learning modules for course theory delivered online.
3. Assessments.

ASSIGNMENT AND/OR COURSE OUTLINE

Course Content:
- Introduction to Industrial Control Systems
- Interfacing Devices
- Controller Operation
- Pressure, Temperature, Flow, and Level Control
- Analytical Instrumentation
- Industrial Process Techniques and Instrumentation
- Instrumentation Symbology
- Process Control Methods
- Instrumentation Calibration & Controller Tuning

Assignments
Assignments will consist of homework problems and reading from the textbook, eLearning materials from Amatrol, hands-on labs performed in class, lab reports, and other assignments at the instructor’s discretion.

A primary focus of this course is the development of the State Curriculum Framework skills:
- Demonstrate an understanding of industrial processes, predictive maintenance programs, and material properties.
- Generate and interpret computer-aided drawings.
- Demonstrate proficiency in using tools, instruments and testing devices.
- Demonstrate basic troubleshooting skills in automated processes.
- Apply mathematical concepts typical in manufacturing processes.

EXAMINATIONS:
Assessments are determined by measuring the ability of each student to retain the learning outcomes and objectives of the course.

1. Attending classes
2. Completing book and computer assignments along with laboratory work.
3. Keeping a course notebook.
4. Quizzes, tests, and comprehensive final exam including practical exam.
Homework & Lab Assignments 45%
Quizzes & Chapter Tests 30%
Notebook & Other Miscellaneous 5%
Comprehensive Final Exam 20%

CERTIFICATION ALIGNMENT:
See course description.

See your Instructor First Day Handout for individual instructor assignment schedule.